
FPGA BASED SYSTEM

DESIGN
Dr. Tayab Din Memon

tayabuddin.memon@faculty.muet.edu.pk

Lecture 9 & 10 : Combinational and Sequential

Logic

mailto:tayabuddin.memon@faculty.muet.edu.pk

Combinational vs Sequential Logic
• Combinational logic output

depends upon the current

input

• Memory less system

• Sequential logic output

needs memory because it

depends upon the

previous states

• Storage elements

connected in feedback

loop with combinational

logic

Concurrent vs Sequential Code
• Only statements placed inside

• the process

• the procedure

• or function are sequential

• but VHDL code is inherently
concurrent (parallel)

• In other words, concurrent are
• Statements outside of a process

• Processes are evaluated
concurrently

• Concurrent code is also called
dataflow code

• In general combinational logic
circuits are build with concurrent
code

Concurrent Statements

•Concurrent statements include:
• Boolean equations

• conditional assignments (when/else,
with/select)

• instantiation

Using Operators

• Easiest and basic way of creating concurrent code

• Complex circuits are easier to deal with sequential code

comparatively, infact

Example – I: Multiplexer

Fig: MUX Block

Fig: MUX

Waveform

When Statement Example: When/ Else or with/ Select / When

When/ Else or with/ Select / When Syntax

Example – 2: Solution with WHEN/ELSE

Fig: MUX Example - II

If x is an integer i.e., x : in

integer range 0 to 3;

Solution – 2: with WITH/SELECT/WHEN

Example – 3: Tri-State Buffer

Fig: Tri-State Buffer

Fig: Vector Waveform

A

x(3:0) Y(3:0)

ena

Encoder 8by3 (i.e., n=8, m=3) When-Else

Fig: Encoder Block

Fig: Simulation Results

Encoder 8by3 (i.e., n=8, m=3) With-Select-When

GENERATE Statement
• It is another concurrent statement. It allows a section of

code to be repeated a number of times, thus creating

several instances of the same assignment.

• An irregular form of GENERATE statement is

IF/GENERATE, syntax given below:

How to use GENERATE Statement?

GENERATE Syntax – I

Example: input as variable

Example: outcome as single driven

Example: outcome as multiple driven

GENERATE Shifter Example

Fig: VHDL Code and Vector

Waveform Output

Home Work

PART-II: SEQUENTIAL

CODE

Sequential Code

• VHDL is inherently concurrent

• IF, WAIT, CASE, and LOOP are executed inside the

PROCESSES, FUNCTIONS, and PROCEDURES that

are sequentially processed.

• Variable is not global, should be declared inside the

process

• Signal can be used globally

Sequential statements: The Process

• A VHDL construct used for grouping sequential
statements

• Statements are processed sequentially during
simulation

• Can be either active or inactive during simulation

• A Process typically has a SENSITIVITY LIST
except when WAIT is used

PROCESS (sensitivity list)

-- optional variable declarations

BEGIN

 sequential statements

END PROCESS ;

The Process Sensitivity List

• A Process is invoked when one or more of the

signals within the sensitivity list change, e.g.

ARCHITECTURE archlist OF list IS

 BEGIN

 nand0: PROCESS (a,b)

 BEGIN

 c <= NOT (a AND b);

 END PROCESS nand;

 END archlist;

if either a or b

changes in any

way, the process

is invoked

Fig: D Flip Flop Symbol

Fig: DFF Vector Waveform

Signal Assignment in Processes

 LIBRARY ieee;

 USE

ieee.std_logic_1164.ALL;

 ENTITY mux2ltch IS PORT (

 a, b: IN std_logic;

 s, en: IN std_logic;

 x: BUFFER std_logic);

 END mux2ltch;

x

a

b

en

s

c

Signal Assignment in Processes:
Incorrect Solution

 ARCHITECTURE archmux2ltch OF mux2ltch IS

 SIGNAL c: std_logic;

 BEGIN

 mux: PROCESS (a,b,s,en)

 BEGIN

 IF s = '0' THEN c <= a;

 ELSE c <= b;

 END IF;

 x <= (x AND (NOT en)) OR (c AND en);

 END PROCESS mux; -- c is updated here!

 END archmux2ltch;

x

a

b

en

s

c

PROCESS: A correct solution

 ARCHITECTURE archmux2ltch OF mux2ltch IS

 SIGNAL c: std_logic;

 BEGIN

 mux: PROCESS (a, b, s)

 BEGIN

 IF s = '0' THEN c <= a;

 ELSE c <= b;

 END IF;

 END PROCESS mux; -- c is updated here!

 x <= (x AND (NOT en)) OR (c AND en);

 END archmux2ltch;

IF Statement
Counter Example Code

Fig: Counter

Vector Waveform

WAIT

•No sensitivity list required

•WAIT UNTIL accepts one signal,

WAIT ON accepts multiple, Wait

For is only for simulation purpose

•Do yourself – develop DFF code

using wait on instead of IF only,

and simulate it in Quartus-II, verify

the functionality and observe the

area-performance differences .

CASE DFF with CASE Statement

•CASE statement has

resemblance with WHEN

•Unlike WHEN, CASE allows

multiple assignments

LOOP: FOR and WHILE

Sample Example Codes

CASE Versus IF and WHEN

• CASE and IF allows selection of one sequence of

statements for execution form a number of alternative

sequences

• CASE vs WHEN

• CASE is sequential, while WHEN is concurrent

• CASE can only be used inside the process, FUNCTIONS, or

PROCEDURES while WHEN outside is reverse

• All permutations can be tested by both

• WHEN can have any number of assignments per test, while

CASE is limited to only one

• NULL is the keyword for no-action in CASE, Unaffected is

used in WHEN for no-action (shown previously in examples)

END OF THE LECTURE
Lecture 9 & 10

