
BASIC VHDL LANGUAGE

ELEMENTS AND SEMANTICS

Lecture 7 & 8

Dr. Tayab Din Memon

Outline

• Data Objects

• Data Types

• Operators

• Attributes

VHDL Data Types

VHDL Data Objects

• Signal

• Constant

• Variable

• File

VHDL Data Objects

• Signal

• An object with a current value and projected (future) values. The
projected values can be changed, as many times as desired, using
signal assignment statements.

• Constant

• An object whose value cannot be changed after it is initially
specified

• Variable

• Variables are only used inside the process statement or
subprograms (functions and procedures), and must be declared in
corresponding declaration regions. A variable’s value can be
changed, as many times as desired, using variable assignment
statements

• File

• An object that consists of a sequence of values of a specified type

Efficient use of variables: Especially notice how the variable (tmp)

is passed to the port signal (C) at the end of the loop

VHDL Data Types: Scalar

• VHDL is a strongly typed language (you cannot assign a
signal of one type to the signal of another type)

• Scalar Types

• Bit – the only values allowed here are 0 or 1

• port (I1,I2: in bit; I3: out bit)

• Boolean – this type has two values: false (0) or true (1)

• port (I1,I2: in bit; I3: out Boolean)

• Integer – Covers all the integer values; can be negative
or positive

• port (I1: in natural; I2: in bit; I3: integer)

• Real – accepts the fraction as well (i.e. 0.45, -5.2E-10)

• port (I1: in natural; I2: in real; I3: out integer);

• Character – report (“Variable x is greater than y”);

VHDL Data Types: Scalar (cont…)

• Scalar Type

• Physical – values that can be measured in units

• constant delay_inv : time :=1ns;

• Severity type – used with assert statement

VHDL Data Types: composite (cont…)

• Composite Types

• Bit_vector Type – represents an array of bits

• port (I1: in bit_vector(3 downto 0); I2: out bit_vector (3 downto 0));

• Array Types – declared by using the predefined word array

• subtype wordN is integer

VHDL Data Types: composite (cont…)

• Composite Types

• Record Types – An object of record type is composed of elements

of the same or different types

• Access Types

• File Types

• Object file read/write

VHDL Data Types: Signed/Unsigned (cont…)

• Signed

• signed is a numeric type

• declared in the external package numeric_std

• Variable d: signed (3 downto 0) :=1010;

• Unsigned

• represents unsigned integer data in the form of an array of

std_logic

• part of package numeric_std

• Variable g : unsigned (3 downto 0) :=1010;

Operations with signed/unsigned data types
Example – I:

Example – II:

• Pre-defined in IEEE 1076 and IEEE 1164 standards

• Package standard of library std:

• Defines Bit, Boolean, Integer, and Real data types

• Package std_logic_1164 of library ieee:

• Defines Std_logic and Std_ulogic data types

• Package std_logic_arith of library ieee:

• Defines signed and unsigned data types plus several
data conversion functions

• Package std_logic_signed and std_logic_unsigned of
library ieee:

• Works with signed and unsigned data types of
std_logic_vector

Pre-Defined data types

IEEE Standard Signal Nine Values

• Logical values versus
metalogical values

• The state of std_ulogic
value denotes its logical
level

• The strength of a
std_ulogic value denotes

• the electrical
characteristics of the
source that drives the
signal

• Deriving strengths:

• forcing, weak and high
impedance

U : uninitialized value is the

default value given to all

std_ulogic signals before the start

of a simulation

Signals driven by active output

drivers are referred to as forcing

strength signals

User-Defined Data Types (Type & Subtype)

• VHDL allows the user to define his own data types

• Defined by a reserved keyword ‘type’

• Can be of any type: scalar or composite type

• A subtype is a type with a constraint

• Mostly used to define objects of a base type with a constraint

 Here newtype is userdefined

datatype of type an integer &

signal mytype is of type

newtype

Signal x, y are of type ttype

that is of type

std_logic_vector

Data Conversion functions

• VHDL doesn’t allow direct
operations (arithmetic,
logic, et) between data of
different types

• Can be done by two ways

• Write a vhdl code

• Invoke a pre-defined
function

• If data are closely related
then ieee.std_logic_1164
provides straightforward
conversion (see the code
fragment)

Exp: Legal and Illegal operations with

subsets

Source: Circuit Design with VHDL by Volnei A. Pedroni

Conversion Functions (cont…)

• Various conversion

functions are available in

the package

ieee.std_arith.all are:

• conv_integer(p)

• conv_unsigned(p,b)

• conv_signed(p,b)

• conv_std_logic_vector(p,b)

Data Conversion (Alternative Approach)

• Here the use of

ieee.std_logic_signed

/unsigned.all package

mitigates the

operation and no

need of conversion

functions

VHDL Operators

• Assignment

• Logical

• Relational

• Arithmetic

• Shift

• Concatenation

VHDL Operators (cont…)
• Assignment operators are

• <=, :=, => used to assign values to a signal, variable, or

individual vector elements

• Logical

• AND, NAND

• OR, NOR

• XOR, XNOR

• NOT

VHDL Operators (cont…)

• Arithmetic

• + (addition)

• - (subtraction)

• * (Multiplication)

• / (Division)

• ** (Exponentiation)

• MOD (Modulus)

• REM (Remainder)

• ABS (Absolute Value)

VHDL Operators (cont…)

• Relational

• = (equal to)

• /= (not equal to)

• < (less than)

• <= (less than or equal to)

• > (greater than)

• >= (greater than or equal to)

Shift Operators (Cont…)

• Shift Operators

• Shift operations move the bits in a pattern, changing the positions of the bits.

They can move bits to the left or to the right. We can divide shift operations

into two categories: logical shift operations and arithmetic shift operations.

• Logical Shift Operators – used for unsigned numbers

• Two types of logical shift operations

• Logical Shift and

• Logical Circular Shift (Rotate)

Logical Shift Operations

Logical Shift Left and Right

Circular Left Shift Operation

Arithmetic Shift Operations

• Arithmetic operations involve adding, subtracting,

multiplying and dividing. We can apply these operations to

integers and floating-point numbers.

• Following is given arithmetic right shift operation on bit

pattern of 10011001. what is difference between original

and new number.

Arithmetic shift left – An Example

• Arithmetic Left Shift Operation on bit pattern 11011001 is

given below.

• What difference is between original and after shift?

VHDL Shift Operators (cont…)

• Shift Operators

• sll – shift left logic

• srl – shift right logic

• sla – shift left arithmetic

• sra – shift right arithmetic

• rol – rotate left logic

• ror – rotate right logic

• For example A= “010011”

• B<= A sll 2:= 001100

• B<= A srl 2:= 000100

• B<= A sla 2:= 001111

• B<= A sra 2:= 001100

• B<= A rol 2 := 001101

• B<= A srl 2 := 110100

VHDL Attributes

• Data Attributes

• Signal Attributes

Data Attributes

Data attributes – Example

• Consider the following signal:

• Signal X : std_logic_vector (3 downto 0);

• X’LOW = 0, X’HIGH = 3, X’LEFT = 3,

• X’RIGHT = 0, X’LENGTH=4,

• X’RANGE (3 downto 0),

• X’REVERSE_RANGE = (0 to 3).

Signal Attributes

Operator Overloading

• User-defined operators are so called operator overloading

in one way

• The ‘+’ operator is defined by IEEE 1076 standard to

operate on numeric types (integers, floating point, and

physical types) but not with enumeration types like

std_logic or bit_vector.

• To introduce a new kind of addition by the operator ‘+’,

supporting bit_vector and std_logic types will be called a

operator overloading

Example – Operator Overloading

User-defined functions

will be discussed later on

Exp: Addition of an integer to a binary 1-bit number

GENERIC

• As the name suggests, GENERIC is a way of specifying

a generic parameter

• The purpose is to confer the code more flexibility and

reusability

• A GENERIC statement must be declared in the entity

part as:

• GENERIC (parameter_name: parameter_type := parameter_value);

• For example: generic (size: natural := 4);

• More than one generic parameters can be defined in an

ENTITY in a same way

One Final Example: Generic Decoder

Use of GENERIC, Operator (+),

and signal/ variable assignment

symbols as well

Waveforms given on the second slide

Waveform of 3x8 decoder

It can easily be seen that after enable has been

asserted, only one output bit is turned low step-by-step.

END OF THE LECTURE

7 & 8

Thanks for your patience

