BASIC VHDL LANGUAGE
ELEMENTS AND SEMANTICS

Lecture 7 & 8
Dr. Tayab Din Memon

Outline

- Data Objects
- Data Types

- Operators

- Attributes

L
VHDL Data Types

Types]

4
m

Array Record

CAER DD

L
VHDL Data Objects

- Signal

- Constant
- Variable
- File

L
VHDL Data Objects

- Signal

- An object with a current value and projected (future) values. The
projected values can be changed, as many times as desired, using
signal assignment statements.

- Constant
- An object whose value cannot be changed after it is initially
specified
- Variable

- Variables are only used inside the process statement or
subprograms (functions and procedures), and must be declared in
corresponding declaration regions. A variable’s value can be
changed, as many times as desired, using variable assignment
statements

- File

- An object that consists of a sequence of values of a specified type

Efficient use of variables: Especially notice how the variable (tmp)
IS passed to the port signal (C) at the end of the loop

library ieee;
use leee.std logic 1164.all;

entity variabletest is
port (A: in std logic vector(7 downto 0);
C: out std logic);
end varilabletest;

architecture vartest of variabletest 1s

begin
vVtst: process (a) -- a 15 a sensitivity list
variable tmp:std logic; -- variable declaration region
begin
tmp:='1'; -- immediate varaible assignment

for 1 in 7 downto 0 loop
tmp:=A(1) and tmp;
end loop;

C{=tmp; -- Passing the variable to a signal
end process;

end vartest;

L
VHDL Data Types: Scalar

VHDL is a strongly typed language (you cannot assign a
signal of one type to the signal of another type)

Scalar Types
- Bit—the only values allowed here are 0 or 1
- port (I,1,: In bit; I3 out bit)
Boolean — this type has two values: false (0) or true (1)
- port (I,1,: in bit; I;: out Boolean)
Integer — Covers all the integer values; can be negative
or positive
- port (I, in natural; I,: in bit; I5: integer)
Real — accepts the fraction as well (i.e. 0.45, -5.2E-10)
- port (I, in natural; I,: in real; 15: out integer);
Character — report (“Variable x is greater than y”);

L
VHDL Data Types: Scalar (cont...)

- Scalar Type

- Physical — values that can be measured in units
- constant delay _inv : time :=1ns;

Severity type — used with assert statement

—— geverity type definition

azsert tFlag_full = falze);
report "The stack i=s full";
severity failure

L
VHDL Data Types: composite (cont...)

- Composite Types
- Bit_vector Type — represents an array of bits
- port (I11: in bit_vector(3 downto 0); 12: out bit_vector (3 downto 0));

- Array Types — declared by using the predefined word array
- subtype wordN is integer

subtype wordl i= integer;
Lyvpe intg iz array (7 downto 0) of wordN:

variable memory: intg;

L
VHDL Data Types: composite (cont...)

- Composite Types

- Record Types — An object of record type is composed of elements
of the same or different types

—— Record Type definition
Type forecost is

record
- Access TypeS Tempr : integer range -100 to 100;
I Day : real;
F”eType§ _ Cond : bit;
- Object file read/write end record:

variable temp : forecast
|

L
VHDL Data Types: Signed/Unsigned (cont...)

- Signed
- signed is a numeric type
- declared in the external package numeric_std
- Variable d: signed (3 downto 0) :=1010;

- Unsigned

- represents unsigned integer data in the form of an array of
std_logic

- part of package numeric_std

- Variable g : unsigned (3 downto 0) :=1010;

L
Operations with signed/unsigned data types

Example — I

library ieee;

uze ieee.std logic 1le4.all;

-- defined arithmatic library

-- for signed/unsigned data types
-- opertions

uze leee.std logic arith.all;

entity signedoperation is

port (X,y: in signed (3 downto 0);
Z: out signed (3 downto 0));

end signedoperation;

architecture dataflow of zignedoperation is
begin

Z<=Xx+y, -- legal operation

Z <= X Xor y; -- illegal operation

-- encountered compilation error

end dataflow;

Example — II:

library ieee;

use ieee.std logic 1164.all;

—-—- gXtra package

--use ieee.=std logic unsigned.all;

entity operationvector i3

port (X,v: in std logic vector (3 downto 0):
2: out std logic vector (3 downto 0})):

end operationvector;

architecture dataflow of operationvector is

begin

Z <= X + ¥; —— illegal operation
—-— encountered compilation error
z <= x and y; —— legal operation

—-— but by uncommenting the arithmatic
-— package both operations will become
-— legal

end dataflow;

L
Pre-Defined data types

- Pre-defined in IEEE 1076 and IEEE 1164 standards
- Package standard of library std:

- Defines Bit, Boolean, Integer, and Real data types
- Package std_logic 1164 of library ieee:

- Defines Std_logic and Std_ulogic data types
- Package std_logic_arith of library ieee:

- Defines signed and unsigned data types plus several
data conversion functions
- Package std_logic_signed and std_logic_unsigned of
library ieee:
- Works with signed and unsigned data types of
std_logic_vector

L
IEEE Standard Signal Nine Values

- Logical values versus
metalogical values

- The state of std_ulogic
value denotes its logical
level

- The strength of a
std_ulogic value denotes
- the electrical
characteristics of the
source that drives the
signal

- Deriving strengths:

- forcing, weak and high
Impedance

Table: State and strength properties of std_ulogic
Value Strength
MNone
Forcing
Forcing
Forcing
High impedance
Weak
Weak
Weak
Mone

Source: VHDL for engineers

U : uninitialized value is the
default value given to all
std_ulogic signals before the start
of a simulation

Signals driven by active output
drivers are referred to as forcing
strength signals

User-Defined Data Types (Type & Subtype)

- VHDL allows the user to define his own data types
- Defined by a reserved keyword ‘type’
- Can be of any type: scalar or composite type

- A subtype is a type with a constraint
- Mostly used to define objects of a base type with a constraint

Here newtype is userdefined type newtype is integer range 0 to 128
. i 1 T : t :
datatype of type an integer & “T0 o TYRYRST SRS
signal mytype is of type subtype ttype iz std logic vector(3 downto 0);

newtype
signal x,y: ttype;

signal ad,ac: ttype;

Signal X, y are Of type ttype signal x,y: std_lngi:_vectnr (7 downto Q)
that is of type signal ad,ac: std logic wector (7 downto 0);

std_logic_vector

L
Data Conversion functions

- VHDL doesn't allow direct Exp: Legal and lllegal operations with

operations (arithmetic, subsets
IO_glC, et) between data Of Type long 1= integer range -100 to 100;
different typeS Type short is integer range -10 to 10;

signal x: short;

- Can be done by two ways _ _ _
_ signal y: long:
- Writeavhdlcode ...,

- Invoke a pre-defined y <= 2*x + 5;
function --Error, type mismatch
y<= long(2*x+3);
- If data are closely related = --ox, result converted into type long

then ieee.std logic 1164
provides straightforward
conversion (see the code
fragment)

Source: Circuit Design with VHDL by Volnei A. Pedroni

L
Conversion Functions (cont...)

library ieee;

uze leee.s3td logic 1164.all;
—— defind arithmatic package
uze ieee.std logic arith.all;

- Various conversion

functions are available in entity dataconversion iz
the package port (®,y: 1n unsigned (7 downto 0);

—— 1input type: unsigned

ieee.Std_arith.a” alre. z: out std legic vector(7 downto 0));
. conv_integer(p) end dataconverzion;
- conv_unsigned(p,b) architecture behaviour of dataconversion is
: begin
conv_S|gned(p,b) z<=conv_std logic vector((x+y),E);
. Conv_std_logic_vector(p,b) —- addition operation of signed data types

-- X+y is converted to std logic vector
-— and paszsed to z (as defined above).
end behaviour;

L
Data Conversion (Alternative Approach)

library ieee;

use leee.3td logic 1le4.all;

-- defind arithmatic package

use ieee.std logic arith.all;

—- defined signed/unsigned packages
-- to get rid of from the conversion

- Here the use of -- cpertions
. . . use leee.3td logic unsigned.all;
|eee:Std_|Og|C_S|gn9d use leee.3td logic signed.all;
/unsigned.all package
mitigates the

entity dataconversionalt is
port (X,v: in unsigned (7 downto 0);

Operatlon and no —- input type: unsigned
need Of ConverSion z: out std logic vector(7 downto 0));
. end dataconversionalt;
functions
architecture behaviour of dataconversion 1is
begin
XX+ V!

-- No conversion operation required due to
-- addition of iEEE.5td_lugic_unsingedfsigned.all;
end behaviour;

L
VHDL Operators

- Assignment

- Logical

- Relational

- Arithmetic

- Shift

- Concatenation

VHDL Operators (cont...)

- Assignment operators are

- <=, :=, =>used to assign values to a signal, variable, or
individual vector elements

- Logical
- AND, NAND
- OR, NOR
- XOR, XNOR
- NOT

VHDL Operators (cont...)

- Arithmetic
- + (addition)
- - (subtraction)
- * (Multiplication)
-/ (Division)
- ** (Exponentiation)
- MOD (Modulus)
- REM (Remainder)
- ABS (Absolute Value)

L
VHDL Operators (cont...)

- Relational
- = (equal to)
- /= (not equal to)
- < (less than)
- <= (less than or equal to)
- > (greater than)
- >= (greater than or equal to)

L
Shift Operators (Cont...)

- Shift Operators

- Shift operations move the bits in a pattern, changing the positions of the bits.
They can move bhits to the left or to the right. We can divide shift operations
Into two categories: logical shift operations and arithmetic shift operations.

- Logical Shift Operators — used for unsigned numbers
- Two types of logical shift operations

- Logical Shift and

- Logical Circular Shift (Rotate)

L
Logical Shift Operations

> <
/—-> I = 1 1 > 1 =N} a= « G G “ o “H 4—\
0 Lost Lost 0
a. Logical right shift b. Logical left shift
> > > > > > > A - H H - - «} <

a. Circular right shift b. Circular left shift

L
Logical Shift Left and Right

Shift Left Logical

AATATATATATA

(--1 o[1|ofo]1]1 1|'-n before

o/1]ofo]1]1]1]0] after

1 0 0 1 Original

/ / / / / /
00 0 1 1 'ﬁ After shift

Circular Left Shift Operation

Arithmetic Shift Operations

- Arithmetic operations involve adding, subtracting,

multiplying and dividing. We can apply these operations to
Integers and floating-point numbers.

- Following is given arithmetic right shift operation on bit

pattern of 10011001. what is difference between original
and new number.

— 1 0 0 1T 1 0 0 1 Original
—>n1 00 1 1 0 0 After shift

L
Arithmetic shift left — An Example

- Arithmetic Left Shift Operation on bit pattern 11011001 is
given below.

- What difference is between original and after shift?

T 1 0 1 1 O

0 1
1011001“

Original

After shift

L
VHDL Shift Operators (cont...)

- Shift Operators
- sll — shift left logic
- srl — shift right logic
- sla — shift left arithmetic
- sra — shift right arithmetic
- rol — rotate left logic
- ror — rotate right logic

- For example A= “010011"
- B<=Asll 2:= 001100

- B<= A srl 2:= 000100

- B<=Asla 2:= 001111

- B<=Asra 2:= 001100

- B<=Arol 2 := 001101

- B<=Asrl 2 :=110100

D
VHDL Attributes

- Data Attributes
- Signal Attributes

Data Attrihi itec

DLOW Returns lower array index

D'HIGH Returns upper array index

D'LEFT Returns leftmost array index

D'RIGHT Returns richtmost array index

D'LENGTH Returns array size

D RANGE Eeturns array range

D' REVERSE _RANGE Returns array range in reverse
order

If the signal is of enumerated type then-

DVAL (position) Returns value in the position
specified

DPOS (value) Returns position of value
specified

D'LEFTOF (value) Returns value in the position to
the left of the value specified

D'VAL (row. column) = Returns value in the position
specified; etc.

Source: circult design with VHDL

Data attributes — Example

- Consider the following signal:

- Signal X : std_logic_vector (3 downto 0);
- X’LOW =0, XHIGH = 3, X'LEFT =3,
- X’'RIGHT =0, XLENGTH=4,
- X’RANGE (3 downto 0),
- X’REVERSE_RANGE = (0 to 3).

Signal Attributes

s LVENT Returns TRUE when an event occurs on =

s lABLE Returns TRUE if no even has occurred on =
during the optional time interval t

s ACTIVE Returns TRUE when a transaction
(assicnment) occurs on = (value might not
change)

s QUIET Returns TRUE if no transaction or event

occurred on s during the optional time t

s LAST VALUE Returns the value of = before the last event
s LAST EVENT Returns the time elapsed since the last
event of s

s LAST ACTIVE Returns the time elapsed since the last

transaction (a sslgnme nt)

Source: circult design with VHDL

L
Operator Overloading

- User-defined operators are so called operator overloading
In one way

- The '+’ operator is defined by IEEE 1076 standard to
operate on numeric types (integers, floating point, and
physical types) but not with enumeration types like
std_logic or bit_vector.

- To introduce a new kind of addition by the operator ‘+’,
supporting bit_vector and std_logic types will be called a
operator overloading

L
Example — Operator Overloading

Exp: Addition of an integer to a binary 1-bit number

library ieee;
uze ieee.std logic 1le4.a311;

User-defined functions : .
. . Ent-lt-l-f ﬂperﬂ.tﬂrﬂ?e rl i=

architecture overloading of operatoroverl is

Function "+" (a: integer; b: bit) return integer 1is
begin

if (b='1"'") then return a+l;

elze return a;

end if;
end |r+lr:_

gignal inpl, outp: integer range 0 to 15;
gignal inpZ2: bit;

begin
outp<= 5 + inpl + inpZ:

end overloading;

R - :
GENERIC

- As the name suggests, GENERIC is a way of specifying
a generic parameter

- The purpose is to confer the code more flexibility and
reusability

- A GENERIC statement must be declared in the entity
part as:

- GENERIC (parameter_name: parameter_type .= parameter_value);
- For example: generic (size: natural .= 4);

- More than one generic parameters can be defined in an
ENTITY in a same way

One Final Example: Generic Decoder

library ieee;
uze ieee.std logic 1le64.all;

entity genericdecoder is=

generic (m : integer = 3;
2ize : integer := 8):
port (enable: in std logicy
zel ! in =td logic wector (m-1 downto 0):

En.‘; genE;izgzczzzzi.ugic_vectnr (zize-1 downto 0)); Use Of GENERIC, Operator (+)’
and signal/ variable assignment
symbols as well

architecture behavioural of genericdecoder i=

begin
process (enable, =zel)
variable templ : =std logic wvector (X'high downto 0);
—— or can be (=size-1 downto 0):
variable temp? ! integer range 0 to X'high:

begin
tenmpl:= (others => '1"');
—— it means tenpl iz alwavs 1
temp2 = 0;

if (enable ='"1"}) then
for i in sel'range loop
—— can be i in 0 to m-1 (a= m defines =el range)
if (sel(i)="1"'")} then
tenpl i=Z2*temp2+1;
el=e
temnp? :=2*%tcemp? ;
end if;
end loop; . .
templ (cemp2) :=10" Waveforms given on the second slide
end if;
x<=templ;
end pIDcess:l
end behavioural:;

Waveform of 3x8 decoder

T e T T e TEY T

It can easily be seen that after enable has been
asserted, only one output bit is turned low step-by-step.

END OF THE LECTURE
[&8

Thanks for your patience

